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Fifth-order corrected field descriptions of the Hermite-Gaussian„0,0… and „0,1… mode laser beam
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In this paper, we extend the work of Barton and Alexander@J. Appl. Phys.66, 2800~1989!# on the fifth-order
corrected field expressions for a Hermite-Gaussian~0,0! mode laser beam to more general cases with adjust-
able parameters. The parametric dependence of the electron dynamics is investigated by numerical methods.
Finally, the fifth-order corrected field equations for the Hermite-Gaussian~0,1! mode are also presented.
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I. INTRODUCTION

During the past two decades, considerable efforts h
been made to investigate the solutions to Maxwell’s eq
tions in vacuum@1–4#, which are of crucial importance in
the study of laser-matter interactions, such as electron ac
eration by far-field intense lasers@5–7# and localized trans-
mission of electromagnetic energy@8–10#. The initial
progress in this direction was the discovery of a small lo
gitudinal field component of electromagnetic radiation w
finite transverse spatial extension@1#. Later it was found that
only by utilizing the field equations including all componen
@4–11# can we explain the well-known experimental resu
of Borham and co-workers@12#, in which they observed the
independence of the energy of the emitted electrons of
polarization of the laser fields. Another example showing
necessity of accurate field descriptions can be found in
intensive discussions@13# resulting from the theoretica
model used by Malkaet al. @14# in their laser acceleration
experiment, in which electrons of 1 MeV energies were o
served. The most discussed point in their model is the
glect of the longitudinal field component. Recently, we p
sented an interpretation corresponding to their experime
results with the full field components in Ref.@7#.

Generally speaking, there are three categories of field
scription. One is the exact analytical solution of Maxwel
equations, for example ranging from the simple plane w
solution and nondiffracted Bessel beams@3# to EDEPT~elec-
tromagnetic directed-energy pulse train! solutions@8#, splash
modes@15#, EM missiles@16#, EM bullets@17# and transient
beams@18#. At present most of these fields have been d
cussed mainly in theoretical work since there are a lot
difficulties in producing them in experiments. The seco
category is the exact integral solutions using the ang
spectrum method@5,6#, i.e., building the field equations from
the superposition of plane waves based upon certain bo
ary conditions. The problem with this group of solutions li
in their intensive consumption of computer time, whi
makes comprehensive numerical study and analysis very
ficult and inefficient. The third category are the approxim
field equations@1#, which are summations of factors to di
ferent orders ofs51/kw0, where k and w0 are the wave
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number and waist radius of the laser beam, respectively.
til now, this group of field descriptions, mostly Hermite
Gaussian beams, has been widely used in laser acceler
studies@19# because of its relatively simple analytical form
To describe tightly focused beams, wherew0 is nearly of the
same order as the wavelength, Barton and Alexander@20#
modified the paraxial approximation introduced by Dav
@21# to fifth-order corrected equations. In this paper, we w
go a step forward by extending their fifth-order correct
field equations to more general cases with two adjusta
parameters. Every set of fixed values of the parameters
provide us with one group of fifth-order corrected field equ
tions. This may give us more opportunities to study the el
tron behavior with different field descriptions and to explo
the characteristics of the electron dynamics. Furthermore,
fifth-order corrected field equations for Hermite-Gauss
~0,1! mode laser beams are also obtained. These res
should be helpful to anyone needing to work with the f
field descriptions of a stationary laser beam, which sati
the Maxwell’s equations accurately.

In the following, Sec. II is devoted to the theoretical d
velopment of the field equations of the Hermite-Gauss
~0,0! mode laser beam. In Sec. III, we present some num
cal examples to demonstrate the parametric dependenc
the electron dynamics in intense lasers. In Sec. IV, follow
the same steps as in Sec. II, we obtain the fifth-order c
rected field equations for the Hermite-Gaussian~0,1! mode.
The final part is a summary.

II. THEORETICAL DEVELOPMENT FOR THE HERMITE-
GAUSSIAN „0,0… MODE LASER BEAM

For a stationary laser beam propagating in vacuum,
harmonic time dependence is assumed to beeivt. For con-
venience in the following discussions, we will drop all th
time-dependence terms in the subsequent formulas. Then
Maxwell equations take the forms

¹W •EW 50, ~1!

¹W 3EW 1 ivBW 50W, ~2!

¹W •BW 50, ~3!
©2001 The American Physical Society12-1
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¹W 3BW 2
iv

c2
EW 50W. ~4!

Throughout this paper, SI units are used. Solutions to
above equations can be found by constructing a Hertz ve
oriented, for example, along a transverse direction,

MW 5c~x,y,z!e2 ikzêx , ~5!

which satisfies the Helmholtz equation, i.e.,

¹W 2MW 1k2MW 50W . ~6!

We will work under the Lorentz gauge as in Ref.@20#

with AW 5MW andf5( ic/k)¹W •MW . Then

EW 52 ivMW 2
ic

k
¹W ¹W MW , ~7!

BW 5¹W 3MW . ~8!

To obtain the Hertz vector, we substitute Eq.~5! into Eq.
~6!. Then

S ]2

]x2
1

]2

]y2
1

]2

]z2
22ik

]

]zD c50. ~9!

As usual@20,21#, we normalizex,y by the beam widthw0

andz by the diffraction lengthkw0
2 , i.e.,

j5
x

w0
, h5

y

w0
, z5

z

kw0
2

. ~10!

So the Helmholtz equation can be rearranged as

S ]2

]j2
1

]2

]h2
22i

]

]z D c52s2
]2

]z2
c ~11!

with s51/kw0
2. If s is assumed to be small,c can be ex-

panded as a sum of even powers ofs,

c5c01s2c21s4c41¯, ~12!

wherec0 , c2 , c4 satisfy the following series of equations

S ]2

]j2
1

]2

]h2
22i

]

]z D c050, ~13!

S ]2

]j2
1

]2

]h2
22i

]

]z D c252s2
]2

]z2
c0 , ~14!

S ]2

]j2
1

]2

]h2
22i

]

]z D c452s2
]2

]z2
c2 . ~15!

Equation~18! is the well-known paraxial equation with th
fundamental Hermite-Gaussian solution
06661
e
or

c05 iQe2 ir2Q, ~16!

in which r25j21h2 andQ51/(i 12z). By substituting the
above equation into Eq.~19!, Davis @21# found c2 to be

c25~2iQ1 ir4Q3!c0 , ~17!

and by using thisc2, Barton and Alexander@20# found c4
from Eq. ~20! to be

c45~26Q223r4Q422ir6Q520.5r8Q6!c0 . ~18!

Through our work, we know thatc2 andc4 are only two
special cases of more general solutions. To show this,
assumec2 to be of the form

c25f2~r,Q!c0 . ~19!

Substituting the above equation into Eq.~19! results in

S r
]2

]r2
1

]

]r
24iQr2

]

]r
14iQ2r

]

]QD f2516iQ3r

14Q4r528Q2r. ~20!

By intensive and somewhat tedious calculations, we can
tain the polynomial solution off2 to be

f25C1Q1~222 iC1!Q2r21 iQ3r4, ~21!

where C1 is an arbitrary constant. The technique used
obtain Eq.~21! is to assume a general polynomial expansio
i.e.,

f25 (
m,n51

1`

CmnQ
mrn. ~22!

Then, substituting it into Eq.~20!, we can get the solution by
equating the coefficients of the factors of the same powe
both sides of Eq.~20!. From this procedure, we can see th
Eq. ~21! should be a quite general solution to Eq.~20!. The
same is true for Eq.~19! and Eq.~14!. For example, if there
exists another different solution satisfying Eq.~14!, which is
assumed to beF2 satisfying Eq.~14!, it can be shown that

S ]2

]j2
1

]2

]h2
22i

]

]z D ~c22F2!50. ~23!

Because we are now seeking the Hermite-Gaussian~0,0!
mode solution, it is required that

c22F25Cc0 ~24!

whereC is an arbitrary constant. This is merely equivalent
adding a trivial constantC to f2 in solving Eq. ~20!. So
there is no more general solution to Eq.~14! than Eq.~21! as
far as the Hermite-Gaussian~0,0! mode field equations are
concerned.

Oncec2 is known, in the same way, we can continue
find the general solutionc4, which can be expressed as
2-2
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FIFTH-ORDER CORRECTED FIELD DESCRIPTIONS OF . . . PHYSICAL REVIEW E 64 066612
c45@A1Q21~26C122iA1!Q3r2

1~616iC120.5A1!Q4r41~24i 1C1!Q5r6

20.5Q6r8#c0 , ~25!

in which A1 is another constant.
However the electromagnetic field components thus

tained from Eq.~19! and Eq.~25! through Eqs.~7! and ~8!
lack symmetry in the electric and magnetic fields sinceBx is
always equal to zero while the other components are not
get symmetric field equations, we start with the Herz vec
in the êy direction, namely,

MW 85c8~x,y,z!e2 ikzêy , ~26!

AW 85MW 8, ~27!

f85
ic

k
¹W •MW . ~28!

Then, repeating the same procedures, we acquire ano
fifth-order corrected field equation, in whichEy is always
equal to zero.

Finally, by superimposing the above two groups of so
tions, we can get symmetric electromagnetic field com
nents, which are summarized as follows:

Ex5@11~X122j2Q2!s21~X21X3j2!s4#c0e2 i z/s2
,
~29!

Ey5~22Q2s21X3s4!jhc0e2 i z/s2
, ~30!

Ez5~22Qs1X4s31X5s5!jc0e2 i z/s2
, ~31!

cBx5~22Q2s21X3s4!jhc0e2 i z/s2
, ~32!

cBy5@11~X122h2Q2!s21~X21X3h2!s4#c0e2 i z/s2
,
~33!

cBz5~22Qs1X4s31X5s5!hc0e2 i z/s2
, ~34!

in which

X15~C122i !Q1~232 iC1!Q2r21 iQ3r4, ~35!

X25@A12224iC1#Q21~10i 211C122iA1!Q3r2

1~1317iC120.5A1!Q4r41~25i 1C1!Q5r6

20.5Q6r8, ~36!

X35~12i 26C1!Q31~1212iC1!Q4r222iQ5r4,
~37!

X45~8i 24C1!Q21~1012iC1!Q4r222iQ4r4, ~38!
06661
-

o
r

er

-
-

X55~12124iC126A1!Q31~260i 148C116iA1!Q4r2

1~254220iC11A1!Q5r41~14i 22C1!Q6r6

1Q7r8. ~39!

As should be expected, when we putC152i and A1526,
Eqs.~31!–~41! return to the special case obtained by Bart
and Alexander@20#.

III. ELECTRON DYNAMICS
WITH DIFFERENT FIELD PARAMETERS

As found by numerical investigations of the relative pe
cent error by Barton and Alexander@20#, the fifth-order cor-
rected field equations can satisfy the Maxwell equations
high accuracy. For example, if a deviation of 1% is acce
able, then the field equations can be used fors less than
about 0.2, which means that the beam waist radius to wa
length ratio is about 0.8. But it should be mentioned h
that, as far as the electron dynamics in the laser fields
concerned, the absolute error may be a more stringent c
rion to decide the applicability of the field equations, esp
cially when very strong lasers are involved. We are not s
whether it is possible to minimizing the errors by optimizin
the two arbitrary parameters in our field equations since
tailed and comprehensive work is needed in order to ch
this possibility, which is not our main interest here. In t
following, we will study the variations of electron dynamic
with C1 andA1.

The interaction configuration between the free elect
and the laser beam in vacuum is presented in Fig. 1, in wh
the electron will be injected from the negativex axis side
into the laser beam with a small crossing angle to the fi
propagation direction, thez axis in our case. The electro
motion is obtained by solving the relativistic Lorent
Newtonian equation with a fourth-order Runge-Kutta n
merical method, as in our previous work@7,19#.

By observing Eqs.~31!–~41!, we find that the factors in

FIG. 1. Schematic configuration of electron scattering by a la
beam. The laser propagates along thez axis. The parameterw0 is
the beam width at the waist. Without losing generality, we assu
that the free electrons come in from the negativex side and parallel
to thex-z plane. The quantity (g i ,Pxi ,Pyi ,Pzi) denotes the incom-
ing energy and momentum of the electron and (g f ,Px f ,Py f

50,Pz f) that of the outgoing electron.g is the Lorentz factor and
b0 the impact parameter.u5tan21(Pxi /Pzi) is the incident angle of
the electron, andc5tan21(Py f /Px f) the deflection angle in thex-y
plane.
2-3
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the expansions includingA1 are at least of orders3, com-
pared withs2 in the factors includingC1 . Thus the influence
of A1 upon the electron dynamics should be much sma
than that ofC1 , especially for large beam width. Two ex
amples are presented in Fig. 2 to show the final elect
energy variations against the free parameterC1 under differ-
ent dimensionless laser intensitya5eE0 /mevc510 and
100, where2e andme are the electron charge and rest ma
respectively,E0 the reference electric field intensity,v the
laser circular frequency, andc the light speed in vacuum. Jus
as expected, for larger beam width, e.g.,kw05200 in the
figure, the electron final energies change very little. B
whenkw0 is reduced to 100, we observe nearly 50% ene
variation in the range21000<C1<1000. It should be men
tioned thatC1 cannot be made arbitrarily large since in ord
to keep the field expansion valid it is necessary to h
C1s2!1. It appears that the importance of the first-ord
corrections, which directly result in the discovery of longit
dinal field components, has been well established now,
sults that further demonstrate the importance of the high
order corrections to the laser fields in the description of
electron dynamics. The great care that should be taken in
laser field description has been expounded in detail by H
et al. in a recent paper@11#, which focuses on the principle
of high accuracy for the nonlinear theory of electron acc
eration in vacuum. Another interesting phenomenon in Fig
is that the parametric dependence of the electron dynami
much more influenced by the width than by the laser int
sity since by increasinga from 10 to 100 the relative energ
variations in Figs. 2~a! and 2~b! do not change very much
This implies that this kind of parametric dependence can
well studied in the low laser intensity region (a;10). This
can be understood when the following fact is considereda
appears linearly in the field equations while the factors
lated toC1 depend upon the beam width in the form ofs2

5(1/kw0)2, s3, etc. In our calculations, we have not foun
much parametric dependence ofA1 using the same param
eters as in Fig. 2. This tells us that the second-order cor
tions should play the predominant role in the above eff
sinceA1 only starts to appear in the third-order correction

FIG. 2. Parametric dependence of the electron final energy, m
sured byg f in units of mec

2. In ~a!, the electron is injected with
Pxi /mec55, Pyi /mec50, Pzi /mec550 into the laser beam with
a510 andkw05100~solid line! and 200~dotted line!, ~b! the same
but for Pxi /mec550, Pyi /mec50, Pzi /mec5500, anda5100.
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IV. FIFTH-ORDER CORRECTED FIELD EQUATIONS
FOR THE HERMITE-GAUSSIAN „0,1… MODE

LASER BEAM

For laser beams of Hermite-Gaussian~0,1! mode, the pro-
cedures to obtain the field equations are the same as in
II except that

c05Q2je2 ir2Q, ~40!

from which we obtain

c25@C18Q1~2320.5iC18!Q2r21 iQ3r4#Q2je2 ir2Q,
~41!

c45FA18Q
21~2 iA1826C18!Q3r2

1S 2
1

6
A1814iC18110DQ4r4

1~25i 10.5C18!Q5r620.5Q6r8GQ2je2 ir2Q.

~42!

HereC1 andA1 are two arbitrary constants. After intensiv
calculations, we summarize the corresponding field eq
tions as follows.

First, for the Hertz vector polarized alongêx , i.e.,

MW 5~c01c2s21c4s4!e2 ikzêx , ~43!

we have

Ex5@11Y1s21~Y21Y3j2!s4#jQ2e2 ir2Q2 i z/s2
, ~44!

Ey5@~22iQ24Q2j2!s21~Y41Y5j2!s4#hQ2e2 ir2Q2 i z/s2
,

~45!

Ez5@~2 i 12Qj2!s1~Y61Y7j2!s3

1~Y81Y9j2!s5#Q2e2 ir2Q2 i z/s2
, ~46!

Bx50, ~47!

By5~11Y10s
21Y11s

4!jQ2e2 ir2Q2 i z/s2
, ~48!

Bz5~22Qs1Y12s
31Y13s

5!hjQ2e2 ir2Q2 i z/s2
, ~49!

in which

Y15~26i 1C18!Q24j2Q21~2320.5iC18!Q2r21 ir4Q3,
~50!

Y25A18Q
21~21829iC18!Q21~30i 2 iA1829C18!Q3r2

1S 1

6
A1814iC18116DQ4r41~25i 10.5C18!Q5r6

20.5Q6r8, ~51!

a-
2-4
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Y35~32i 28C18!Q31~2812iC18!Q4r224iQ5r4,
~52!

Y45~2623iC18!Q21~10i 2C18!Q3r212Q4r4, ~53!

Y55~32i 28C18!Q31~2812iC18!Q4r224iQ5r4,
~54!

Y65~242 iC18!Q21~5i 20.5C18!Q2r21Q3r4, ~55!

Y75~18i 23C18!Q21~141 iC18!Q3r222iQ4r4, ~56!

Y85~2 iA1826C18!Q21~2A18112iC18124!Q3r2

1S 1

6
iA1815C18226i DQ4r41~2720.5iC18!Q5r6

10.5Q4r8, ~57!

Y95~24A18136iC18148!Q31S 8

3
iA18144C182152i DQ4r2

1S 1

3
A18213iC18294DQ5r41~18i 2C18!Q6r61Q7r8,

~58!

Y105~C1824i !Q1~2520.5iC18!Q2r21 iQ3r4, ~59!

Y115~A1826iC18!Q21~2 iA18212C18124i !Q3r2

1S 2
1

6
A1815iC18126DQ4r41~27i 10.5C18!Q5r6

20.5Q6r8, ~60!

Y125~6i 23C18!Q21~101 iC18!Q3r222iQ4r4, ~61!

Y135~24A18112iC18!Q31S 8

3
iA18128C18240i DQ4r2

1S 1

3
A18211iC18250DQ5r41~14i 2C18!Q6r61Q7r8.

~62!

Second, when the Hertz vector is polarized alongêy , for
symmetry reasons, we use

c085Q2he2 ir2Q, ~63!

c285@C18Q1~2320.5iC18!Q2r21 iQ3r4#Q2he2 ir2Q,
~64!
06661
c485FA18Q
21~2 iA1826C18!Q3r2

1S 2
1

6
A1814iC18110DQ4r4

1~25i 10.5C18!Q5r620.5Q6r8GQ2he2 ir2Q

~65!

to replacec0 , c2 , andc4 in Eq. ~45!. Then the related field
equations can be obtained as

Ex5@~22iQ24Q2h2!s2

1~Y41Y5h2!s4#jQ2e2 ir2Q2 i z/s2
, ~66!

Ey5@11Y1s21~Y21Y3h2!s4#hQ2e2 ir2Q2 i z/s2
, ~67!

Ez5@~2 i 12Qh2!s1Y7h2s3

1~Y81Y9h2!s5#Q2e2 ir2Q2 i z/s2
, ~68!

Bx5~11Y10s
21Y11s

4!hQ2e2 ir2Q2 i z/s2
, ~69!

By50, ~70!

Bz5@22Qs1Y12s
31Y13s

5#jhQ2e2 ir2Q2 i z/s2
. ~71!

Finally the symmetric field descriptions can be obtain
by superimposing the above two groups of equations.

V. SUMMARY

In this paper, we have extended the work of Barton a
Alexander@20# on the fifth-order corrected field expressio
for a Hermite-Gaussian~0,0! mode laser beam to more gen
eral cases with adjustable parametersC1 andA1 . C1 begins
to appear in the expansion from the factor of orders2 andA1
from the factor of orders3. The parametric dependence
the electron dynamics was investigated by numerical me
ods. It was found that such dependence is mainly influen
by the beam width and comes from the second-order cor
tions in the expansions. Finally, the fifth-order corrected fi
equations for Hermite-Gaussian~0,1! mode were also pre
sented. All these results will be of potential interest in e
ploring the electron dynamics in strong laser fields, wh
highly precise analytical descriptions are in great dema
since they can greatly simplify the numerical calculatio
and make the analysis of results much more efficient.
study the physical consequences of all these high-order
expressions in laser acceleration will be our next work.
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